Expression Patterns of GmAP2/EREB-Like Transcription Factors Involved in Soybean Responses to Water Deficit
نویسندگان
چکیده
Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in response to water deficit and to environmental diurnal changes is very important for unveiling water deficit stress tolerance mechanisms. Here, we analyzed the expression patterns of ten APETALA2/Ethylene Responsive Element Binding-like (AP2/EREB-like) transcription factors in two soybean genotypes (BR16: drought-sensitive; and Embrapa 48: drought-tolerant). According to phylogenetic and domain analyses, these genes can be included in the DREB and ERF subfamilies. We also analyzed a GmDRIP-like gene that encodes a DREB negative regulator. We detected the up-regulation of 9 GmAP2/EREB-like genes and identified transcriptional differences that were dependent on the levels of the stress applied and the tissue type analyzed (the expression of the GmDREB1F-like gene, for example, was four times higher in roots than in leaves). The GmDRIP-like gene was not induced by water deficit in BR16 during the longest periods of stress, but was significantly induced in Embrapa 48; this suggests a possible genetic/molecular difference between the responses of these cultivars to water deficit stress. Additionally, RNAseq gene expression analysis over a 24-h time course indicates that the expression patterns of several GmDREB-like genes are subject to oscillation over the course of the day, indicating a possible circadian regulation.
منابع مشابه
Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملDifferential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملتأثیر هگزاکونازول بر خصوصیات کمی و کیفی دو رقم سویا در شرایط تنش کمآبی
In order to investigate the effect of Hexaconazole (HEX) on quantitative and qualitative characteristics of two soybean (Glycine max L.) cultivars under water deficit stress, an experiment was conducted in the Faculty of Agriculture of Tarbiat Modares University in the year 2010-2011 as a factorial experiment in randomized complete block design arrangement. Factors examined in this study were s...
متن کاملExpression pattern of drought stress marker genes in soybean roots under two water deficit systems
The study of tolerance mechanisms for drought stress in soybean is fundamental to the understanding and development of tolerant varieties. Using in silico analysis, four marker genes involved in the classical ABA-dependent and ABA-independent pathways of drought response were identified in the Glycine max genome in the present work. The expression profiles of the marker genes ERD1-like, GmaxRD2...
متن کاملEffect of water deficit on physiological response, total protein and gene expression of Rab17 in wheat (Triticumaestivum)
Drought is the cause of adverse environmental impacts on plant growth and crop yield. In this study, the effects of water deficit on plant molecular and physiological responses were investigated using two cultivars (namely, Sardari and Zarin) of bread wheat selected based on the results of a three-year research. For the purposes of this study, they were grown in plastic pots containing field so...
متن کامل